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Abstract
The application of cumulant expansion is generalized to a ferrimagnetic system
of large spins. An effective Hamiltonian is obtained in terms of classical
variables for a quantum spin chain to describe the thermodynamic properties
at moderate and high temperature regimes. We have considered quantum
corrections up to second order in the cumulant expansion where fairly good
results are observed in the convergent regime, i.e T > Js. (J is the exchange
coupling between spins, s is the smaller spin (S1, s2) and T is temperature.)
Our results show that the correlation of more than two neighbouring sites
is negligible at moderate and high temperature. Thus the results of a single
ferrimagnet molecule can be applied to the chain of interacting molecules for
temperature greater than the classical energy scale, i.e. T > J S1s2.

1. Introduction

The low temperature properties of ferrimagnets can be described in different ways [2, 1]. For
instance spin wave theory gives an explanation for low temperature physics of ferrimagnetic
chains [2]. However, it is valid for temperature smaller than the classical energy scale
(T � J S1s2). It is our task to obtain the physics of ferrimagnets systematically at moderate
(where quantum corrections are important) and higher temperatures. Cumulant expansion
(CE) [3–5] is our approach to this problem. Recently this method has been implemented to
study finite temperature behaviour of homogeneous large spin systems [6, 7]. It has been
observed that cumulant expansion converges in a region T > Js which is wider than the
corresponding one in the high temperature series expansion [9] and even overlaps the validity
regime of spin wave theory for homogeneous spin systems.

We have generalized the application of cumulant expansion to ferrimagnetic models.
In this approach we obtain a quasiclassical Hamiltonian for an (S1, s2) system. The
effective Hamiltonian which is a function of classical variables takes into account the
quantum corrections systematically in the order of (Js/T ) where s is the smaller value of

0953-8984/05/141293+05$30.00 © 2005 IOP Publishing Ltd Printed in the UK S1293

http://dx.doi.org/10.1088/0953-8984/17/14/019
http://stacks.iop.org/JPhysCM/17/S1293


S1294 J Abouie and A Langari

(S1, s2). For nearest neighbour interaction in the ferrimagnetic chain, the first order effective
Hamiltonian is composed of two-site correlation. Consequently the results of CE for a single
molecule of (S1, s2) are the same as for one-dimensional interacting molecules. We have also
found that in the convergence region the gas model is a good representation of a chain of
interacting molecules up to second order expansion.

2. Theory of cumulants and effective Hamiltonian

Thermodynamic properties of any quantum spin system with a Hamiltonian Ĥ can be described
by using the effective Hamiltonian H which can be constructed using cumulant expansion and
spin coherent state |n〉 representation [4–8, 10]. The partition function (Z) of a spin system
can be expressed in the basis of coherent states which are overcomplete, so it contains all
quantum states. The classical state of a spin is achieved in the limit S → ∞. The partition
function of a system of N spins defined by the Hamiltonian Ĥ , is the following:

Z =
∫ N∏

i=1

(
2Si + 1

4π

)
dni〈n1 . . . nN |e−β Ĥ |n1 . . . nN 〉 (1)

where β = 1/T (choosing kB = 1). If we define

e−βH ≡ 〈n1 . . . nN |e−β Ĥ |n1 . . . nN 〉, (2)

the partition function is the same as a classical one. The above equation can be expanded in
the following form by a Taylor expansion.

βH = β〈Ĥ〉c − β2

2!
〈Ĥ Ĥ 〉c +

β3

3!
〈Ĥ Ĥ Ĥ〉c + · · · = β(H(0) + H(1) + H(2) + · · ·). (3)

Thus the effective Hamiltonian (H) can be considered as a systematic expansion in terms of
cumulants of powers of Ĥ . The functionH evidently depends on temperature, thus calculation
of physical quantities should be done with care. The cumulant of N operators (Ai) [3, 4] is
defined as

〈A1 . . . An〉c = ∂

∂λ1
· · · ∂

∂λn
ln〈eλ1 A1+λ2 A2+···〉|

λ1=···=λn =0 . (4)

Let us consider an interacting system of ferrimagnetic molecules where each molecule is
composed of two spins (S1, s2). The interaction between spins is either ferromagnetic (−) (F)
or antiferromagnetic (+) (AF), given by the following Hamiltonian:

Ĥ = ∓
N
2 , N

2∑
i, j

J2i−1,2 j S2i−1 · s2 j (5)

where S2i−1 and s2 j are spin operators of size S1 and s2, respectively. To find an expansion for
the physical quantities we should first calculate the semiclassical effective Hamiltonian defined
in equation (3). We will consider the cumulant expansion up to second order corrections which
comes from H(2).

The first term of H is H(0) = 〈H 〉c = ∓ω
∑

i, j J̃2i−1,2 j n2i−1 · n2 j where ω = S1
s2

> 1,

s ≡ min{S1, s2} = s2 and J̃2i−1,2 j = J2i−1,2 j s2. This term shows the classical contribution
which simply represents the energy of coupled classical spins whose lengths are S1 and s2.
H(1) and H(2) are quantum corrections, where H(1) is as follows,
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Figure 1. The internal energy per molecule and heat capacity of the ferrimagnetic (S1 = 4, s2 = 2)

gas model with ferromagnetic (F) coupling. The exact result of the gas model (solid curve) and
different orders of cumulant expansion for the gas model and a chain of interacting molecules.

H(1) = −βω

8s2

∑
i, j

J̃ 2
2i−1,2 j (1 − n2i−1 · n2 j )

2 − βω

4s

∑
i, j,l

J̃2i−1,2 j J̃2i−1,2l

× (n2 j · n2l − (n2i−1 · n2 j )(n2i−1 · n2l)) − βω2

4s

∑
i, j,l

J̃2i−1,2 j J̃2l−1,2 j

× (n2i−1 · n2l−1 − (n2i−1 · n2 j )(n2l−1 · n2 j )). (6)

As is obvious from equation (6), the second and third terms contain coupled interaction of
three sites, i.e. (n2i−1 · n2 j )(n2i−1 ·n2l) and (n2i−1 ·n2 j )(n2l−1 · n2 j ). This is different from the
two-site interaction of the original Hamiltonian, equation (5). It is the price of working with a
classical Hamiltonian instead of the original quantum form. The last two terms in equation (6)
give the information on three-site correlation. We will come back to this point later when
comparing the results of the gas model with a chain of interacting ferrimagnetic molecules. It

can be shown that the second order correction,H(2), is in (
β J̃
s )2 order (the detailed version of the

paper can be found in [8]). Generally, in the cumulant expansion the nth order term, H(n), can

be considered of J̃ (
β J̃
s )n order. It is clear that H is an expansion in powers of β J̃/s = Js/T ,

so it is valid as long as T > Js. Quantum corrections have a non-Heisenberg form and
their structure become more and more complex with increasing order. These corrections are
important in the intermediate temperature where classical fluctuations are not strong enough
to suppress quantum ones. At very high temperature the classical term is dominant.

3. Results and discussions

To obtain the physical quantities we consider the nearest neighbour case, Ji j = Jδi, j±1,
in a chain of ferrimagnets, because most synthesized materials behave as nearest neighbour
interacting molecules; moreover, a comparison with other results is possible in this case.

Quasiclassical expansions for the internal energy per molecule (U) and heat capacity (C)

of (S1 = 4, s2 = 2) ferrimagnetic chains (− · · − · · − line) for F and AF coupling are shown
in figures 1, 2, respectively.

The gas model is an ideal gas of ferrimagnetic molecules where each molecule is
composed of two spins (S1, s2) and the interaction between spins in all molecules is given
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Figure 2. The internal energy per molecule and heat capacity of the ferrimagnetic (S1 = 4, s2 = 2)

gas model with antiferromagnetic (AF) coupling. Exact result of the gas model (solid curve) and
different orders of cumulant expansion for the gas model and a chain of interacting molecules.

by Ĥ = ∓JS1 · s2. The cumulant expansion of internal energy and heat capacity up to second
order and the exact solution for this model have been also plotted in figures 1 and 2. It is
surprising that the second order expansion of the AF gas model fits very well to the exact result
even for very small values of t . The different behaviour of F and AF cases is related to the
absolute value of �E for the lowest states. For F coupling, �E is larger than the AF one,
i.e. �E (1)(F) − �E (1)(AF) = J (2s2 − 1). This means that cumulant expansion works better
for the AF case. In this respect we should note that a cumulant expansion is similar to a high
temperature series expansion which starts from T → ∞, where the probabilities of all states
are equal. Then different orders of expansion are responsible for recovering the non-equal
probability of states. This is crucial when the low energy spectrum is not dense (like the F
case) where a big difference exists between the occupation probability of lowest levels. Thus
we expect to observe stronger quantum effects in the ferromagnetic case.

Meanwhile, we observe that the zero classical and first order expansion is the same for the
gas model and the interacting chain, because the first order expansion (H(0) + H(1)) contains
information on two-site correlation. This can be shown easily by the following equation:

〈H(1)〉 = −βω J̃ 2

8s2

N∑
i=1

〈(1 − ni · ni+1)
2〉 − β J̃ 3

4s
ω(ω + 1)

N∑
i=1

〈1 − (ni · ni+1)
2〉. (7)

As far as the correlation of two sites is concerned the behaviour of a single molecule and a chain
of molecules with nearest neighbour interaction is the same. The inset of different behaviour
for chain and non-interacting molecules comes from the correlation of three sites. Such terms
exist in H(2) and contribute in the 1/s2 correction. The difference of the 1/s2 expansion is seen
in figure 1. This deviation is clearer for the low temperature regime where quantum effects
are important. But for temperature greater than the classical energy scale, T > J S1s2, there
is a good agreement between the gas model and the ferrimagnetic chain. This shows that the
correlation of more than two sites is important for low temperatures, t < ω (t = T/Js2). In
other words, at moderate and higher temperature an ideal gas of molecules represents a chain
of ferrimagnets very well.

The heat capacity of both figures 1 and 2 decreases for high t which is the sign of
antiferromagneticbehaviour in the upper part of spectrum of a ferrimagnetic chain. We also see
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a Schottky-like peak in C which is the result of ferromagnetic to antiferromagnetic crossover.
However, this peak is in the region where cumulant expansion is not necessarily convergent.
Then our plots for t � 1 might not be reliable, although we know from other arguments [12, 13]
that this peak exists.

The large S spin wave approximations [1, 11, 13] are imposed to an extra constraint to
be applicable for moderate temperature, because it is valid for low temperature (by definition)
where only the low energy spectrum has the dominant effect. Adding an extra constraint needs
a self-consistent numerical solution to obtain thermodynamic properties. We have learnt about
the recent high temperature expansion derived for the alternating spin chains [14]. As has
been mentioned earlier the high temperature expansion is convergent for temperatures higher
than our cumulant expansion. However, it is possible to implement a Padé approximation
to connect the results of high temperature expansion to the low temperature regime. In this
respect we need to know some information on the ground state energy of the system which is
not generally available. In comparison, our results are analytic (in a closed form) and general
in the sense that it can be applied to any ferrimagnetic system for arbitrary exchange couplings.
The effective Hamiltonian derived here is in terms of arbitrary Ji, j which covers long range
interactions as well as any lattice structures.

As an outlook, this work can be generalized to ladder geometry. It is known that the
zero-temperature behaviour of ferrimagnetic ladders [15] is different from homogeneous spin
counterparts [16]. It is interesting to see the difference for finite temperature, for instance the
evolution of magnetization plateaux [17, 18].
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